Enumerating Matroids of Fixed Rank

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enumerating Matroids of Fixed Rank

It has been conjectured that asymptotically almost all matroids are sparse paving, i.e. that s(n) ∼ m(n), where m(n) denotes the number of matroids on a fixed groundset of size n, and s(n) the number of sparse paving matroids. In an earlier paper, we showed that log s(n) ∼ logm(n). The bounds that we used for that result were dominated by matroids of rank r ≈ n/2. In this paper we consider the ...

متن کامل

Enumerating bases of self-dual matroids

We define involutively self-dual matroids and prove a relationship between the bases and selfdual bases of these matroids. We use this relationship to prove an enumeration formula for the higher dimensional spanning trees in a class of cell complexes. This gives a new proof of Tutte’s theorem that the number of spanning trees of a central reflex is a perfect square and solves a problem posed by...

متن کامل

Algorithms for Enumerating Circuits in Matroids

We present an incremental polynomial-time algorithm for enumerating all circuits of a matroid or, more generally, all minimal spanning sets for a flat. This result implies, in particular, that for a given infeasible system of linear equations, all its maximal feasible subsystems, as well as all minimal infeasible subsystems, can be enumerated in incremental polynomial time. We also show the NP-...

متن کامل

Rank-Three Matroids are Rayleigh

A Rayleigh matroid is one which satisfies a set of inequalities analogous to the Rayleigh monotonicity property of linear resistive electrical networks. We show that every matroid of rank three satisfies these inequalities.

متن کامل

Enumerating Spanning and Connected Subsets in Graphs and Matroids

We show that enumerating all minimal spanning and connected subsets of a given matroid can be solved in incremental quasipolynomial time. In the special case of graphical matroids, we improve this complexity bound by showing that all minimal 2-vertex connected edge subsets of a given graph can be generated in incremental polynomial time.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2017

ISSN: 1077-8926

DOI: 10.37236/5894